Challenges and Goals
The focus of the research area laser technology and optronics is in basic and applied research in the areas of lasers and photonic components in the near and mid-infrared and associated laser metrology. In particular, the specific requirements in optronics in the wavelength range of 1.5 µm - 12 µm are addressed (short-wave (SWIR), mid-wave (MWIR), long-wave (LWIR) infrared).
The research challenges are complex and address, for example, the increase of power and performance, the efficient generation of new wavelengths or the implementation of new laser concepts and architectures to achieve specific operating data under special boundary conditions (size, weight, reduced cooling options, intermittent operation, etc.). This requires extensive research into laser-active materials and components, from individual photonic components to system aspects.
Laser architecture | non-linear optics | fiber-optic components |
New laser architectures: We are investigating new resonator arrangements to improve beam quality and robustness of lasers. This also includes modelling and simulation of laser dynamics and thermal effects in lasers based on rate equations and cavity-internal field propagation. To research and optimize new laser architectures and non-linear converters, laser structures are modeled three-dimensionally and examined using field propagation. The development of suitable simulation tools is also of particular importance.
Lasers and non-linear optics in the SWIR / MWIR / LWIR range: In close cooperation with Fraunhofer IOSB, we investigate and develop new laser sources and non-linear converters. This includes solid-state and fiber lasers based on rare-earth and transition metals (Er3+, Tm3+, Ho3+, Cr2+) as direct emitters or as pump lasers as well as non-linear converters based on mid-IR materials (ZnGeP2, GaAs, etc.). We also investigate new laser materials and non-linear materials with spectroscopic methods in order to evaluate their suitability as active material and develop and investigate miniaturized resonator structures and opto-mechanical realizations for robust and integrated laser systems.
Design and development of fiber optic components in the SWIR / MWIR: We develop and investigate spliced fiber components to increase the performance of fiber lasers and fiber amplifiers, such as fiber End-Caps.
Free space laser communication: We investigate atmospheric propagation and perform research in laser communication and operate a laser-communication lab with KIT-internal test ranges over a few hundred meters and, in cooperation with Fraunhofer IOSB, an optical propagation range of approx. 8 km in distance.
Chair of Optronics
Contact: Prof. Marc Eichhorn
Staff
![]() |
Jan LautenschlägerResearch Associate
Research Interest: Fiber lasers |
![]() |
Katharina GothResearch Associate
Research Interest: |
![]() |
Julian SchneiderResearch Associate
Research Interest: |
![]() |
Patrick ForsterResearch Associate
Research Interest: |
![]() |
Dominik LorenzResearch Associate
Research Interest: |
![]() |
Marius RuppResearch Associate
Research Interest: |
![]() |
Johannes DeutschResearch Associate
Research Interest: |
Publications
-
High average power Q-switched Ho 3+ :YAG laser with a single-line emission at 2122 nm
Rupp, M.; Goth, K.; Eichhorn, M.; Kieleck, C.
2023. Optics Letters, 48 (21), 5619–5622. doi:10.1364/OL.501824 -
3D quantum ghost imaging
Pitsch, C.; Walter, D.; Bürsing, H.; Eichhorn, M.
2023. R. C. Hollins, G. S. Buller, R. A. Lamb, M. Laurenzis, P. M. Alsing, P. Walther, M. L. Fanto, N. A. Salmon & F. Gumbmann (Eds.), Emerging Imaging and Sensing Technologies for Security and Defence VIII, Amsterdam, 3rd - 6th September 2023, 5, SPIE. doi:10.1117/12.2678000 -
3D quantum ghost imaging
Pitsch, C.; Walter, D.; Gasparini, L.; Bürsing, H.; Eichhorn, M.
2023. Applied Optics, 62 (23), 6275–6281. doi:10.1364/AO.492208 -
Iterative 3D Modeling of Pulse Generation in End-Pumped Ho 3+ :YAG Laser Resonators Utilizing Active Q-switching
Rupp, M.; Goth, K.; Eichhorn, M.; Kieleck, C.
2023. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 26-30 June 2023, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/cleo/europe-eqec57999.2023.10232536 -
Limitations of homogeneous and segmented single-crystal compact TEM-mode Ho:YAG laser resonators
Goth, K.; Rupp, M.; Griesbeck, M.; Eitner, M.; Eichhorn, M.; Kieleck, C.
2023. Applied Physics B: Lasers and Optics, 129 (6), Art.-Nr.: 95. doi:10.1007/s00340-023-08033-8 -
Nanosecond pulsed narrow-linewidth all-fiber source for ZGP-OPO pumping
Lorenz, D.; Romano, C.; Panitzek, D.; Forster, P.; Schneider, J.; Büker, H.; Eichhorn, M.; Kieleck, C.
2023. Optics Continuum, 2 (3), 660 – 669. doi:10.1364/OPTCON.486081 -
Q-switched Ho3+:YAG Porro resonators with improved alignment stability
Goth, K.; Griesbeck, M.; Eitner, M.; Eichhorn, M.; Kieleck, C.
2023. Proc. SPIE 12399, Solid State Lasers XXXII: Technology and Devices, Art.-Nr.: 1239909, SPIE. doi:10.1117/12.2652592 -
Power Limits of Compact Ho:YAG Laser Resonators with Homogeneously Doped and Segmented Crystals
Goth, K.; Griesbeck, M.; Rupp, M.; Eitner, M.; Eichhorn, M.; Kieleck, C.
2023. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 1–1, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CLEO/Europe-EQEC57999.2023.10231704 -
Single-End-Pumped Tm:Ho-Codoped all-Fiber Laser at 2120 nm
Forster, P.; Panitzek, D.; Romano, C.; Lorenz, D.; Schneider, J.; Eichhorn, M.; Kieleck, C.
2023. 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 1–1, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CLEO/Europe-EQEC57999.2023.10232508 -
Iterative 3D modeling of thermal effects in end-pumped continuous-wave HO:YAG lasers
Rupp, M.; Eichhorn, M.; Kieleck, C.
2023. Applied Physics B: Lasers and Optics, 129 (1), 1–11. doi:10.1007/s00340-022-07939-z
-
Alignment-insensitive end-pumped continuous-wave crossed-Porro prism Ho:YAG laser
Goth, K.; Griesbeck, M.; Eitner, M.; Büker, H.; Eichhorn, M.; Kieleck, C.
2022. Optics Letters, 47 (13), 3143–3146. doi:10.1364/OL.459892 -
High-power continuous-wave Tm3+:Ho3+-codoped fiber laser operation from 2.1 µm to 2.2 µm
Forster, P.; Romano, C.; Schneider, J.; Eichhorn, M.; Kieleck, C.
2022. Optics Letters, 47 (10), 2542–2545. doi:10.1364/OL.458921 -
Three-stage MOPA 2 µm fiber laser for ZGP OPO pumping
Lorenz, D.; Romano, C.; Panitzek, D.; Forster, P.; Schneider, J.; Büker, H.; Eichhorn, M.; Kieleck, C.
2022. P. G. Schunemann & V. Petrov (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XXI. Ed.: P. G. Schunemann, Art.-Nr.: 119850H, SPIE. doi:10.1117/12.2610238 -
Improved 3D modeling of end-pumped continuous-wave Ho3+:YAG lasers by inclusion of temperature-dependent material parameters
Rupp, M.; Eichhorn, M.; Kieleck, C.
2022. Optica Advanced Photonics Congress 2022, JW3A.4, Optica Publishing Group (OSA). doi:10.1364/ASSL.2022.JW3A.4 -
Iterative 3D modeling of thermal effects in end-pumped continuous-wave Ho 3+ : YAG lasers
Rupp, M.; Goth, K.; Eichhorn, M.; Kieleck, C.
2022. EPJ Web of Conferences, 267, Article no: 01003. doi:10.1051/epjconf/202226701003 -
Negotiation-based cooperative planning of local trajectories
Schneider, J.; Rothfuß, S.; Hohmann, S.
2022. Frontiers in control engineering, 3, Art.Nr. 1058980. doi:10.3389/fcteg.2022.1058980
-
Investigation of the Optical Gain in a Compact Ho:YAG MOPA System
Goth, K.; Griesbeck, M.; Eitner, M.; Büker, H.; Eichhorn, M.; Kieleck, C.
2021. Proceedings Laser Congress 2021 (ASSL,LAC): Part of Laser Congress ; 3–7 October 2021, Washington, DC, United States, Art.-Nr.: JM3A.6, Optica Publishing Group (OSA). doi:10.1364/ASSL.2021.JM3A.6 -
Asynchronous Quantum Ghost Imaging
Pitsch, C.; Walter, D.; Luzmann, P.; Bürsing, H.; Eichhorn, M.
2021. Proceedings Quantum Information and Measurement VI 2021: 1–5 November 2021, Washington, DC, United States, Art.-Nr.: Th4A.3, Optica Publishing Group (OSA). doi:10.1364/QIM.2021.Th4A.3 -
High-pulse-energy high-brightness Q-switched Tm:Ho-codoped triple-clad polarizationmaintaining fiber laser
Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. OSA Continuum, 4 (7), 1907–1915. doi:10.1364/OSAC.423746 -
Watt-level thulium:holmium-codoped versus holmium-doped polarization-maintaining fiber amplifier at 2050 and 2090 nm
Romano, C.; Lorenz, D.; Eichhorn, M.; Kieleck, C.
2021. Laser Technology for Defense and Security XVI: SPIE Defense + Commercial Sensing, 12-17 April 2021. Ed.: M. Dubinskii, Art.-Nr.: 117240I, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2587919 -
Mid-infrared optical parametric oscillator pumped by a high-pulse-energy, Q-switched Ho³⁺:YAG laser
Griesbeck, M.; Büker, H.; Eitner, M.; Goth, K.; Braesicke, P.; Eichhorn, M.; Kieleck, C.
2021. Applied optics, 60 (22), F21-F26. doi:10.1364/AO.424039 -
Nanosecond pulsed single-frequency two-stage holmium-doped fiber MOPA at 2054 nm and 2090 nm
Lorenz, D.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. Applied Optics, 60 (22), F27-F32. doi:10.1364/AO.424061 -
Q-switched, high average output power Tm:Ho-codoped triple-clad fiber laser for nonlinear frequency conversion
Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. Nonlinear Frequency Generation and Conversion: Materials and Devices XX. Ed.: P. G. Schunemann, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2578104 -
KW-class nanosecond pulsed polarized MOPA laser at 2050 and 2090 nm
Romano, C.; Lorenz, D.; Eichhorn, M.; Kieleck, C.
2021. Nonlinear Frequency Generation and Conversion: Materials and Devices XX. Ed.: P. G. Schunemann, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2577180 -
Advances in 2 μm polarization-maintaining thulium-doped Q-switched fiber lasers for frequency conversion into the mid-IR
Schneider, J.; Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. Nonlinear Frequency Generation and Conversion: Materials and Devices XX. Ed.: P. G. Schunemann, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2577118 -
High-pulse-energy, Q-switched Ho:YAG laser for mid-infrared optical parametric oscillator pumping
Griesbeck, M.; Büker, H.; Eitner, M.; Goth, K.; Braesicke, P.; Eichhorn, M.; Kieleck, C.
2021. Nonlinear Frequency Generation and Conversion: Materials and Devices XX. Ed.: P. G. Schunemann, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2582997 -
Investigation of the pulse energy limits of actively Q-switched polarization-maintaining Tm-doped fiber lasers
Schneider, J.; Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. OSA Continuum, 4 (5), 1577–1586. doi:10.1364/OSAC.423812 -
High pulse energy ZnGeP OPO directly pumped by a Q-switched Tm-doped single-oscillator fiber laser
Schneider, J.; Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2021. Optics Letters, 46 (9), 2139–2142. doi:10.1364/OL.422702
-
Recent advances in high-power 2 µm fiber lasers for frequency conversion into the mid-IR
Forster, P.; Romano, C.; Eichhorn, M.; Kieleck, C.
2020. P. G. Schunemann & K. L. Schepler (Eds.), Nonlinear Frequency Generation and Conversion: Materials and Devices XIX 2020; San Francisco; United States; 3 February 2020 through 5 February 2020, Art. Nr.: 112640H, SPIE. doi:10.1117/12.2545990 -
kW class nanosecond polarization-maintaining Holmium MOPA at 2050 nm and 2090 nm
Romano, C.; Lorenz, D.; Eichhorn, M.; Kieleck, C.
2020. Mid-Infrared Coherent Sources, in: in Proceedings OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS): 16–20 November 2020, Washington, DC, United States, Art.-Nr.: MF2C.2, Institute of Electrical and Electronics Engineers (IEEE) -
High-pulse-energy actively Q-switched polarization-maintaining Tm$^[3+]-doped silica fiber laser
Schneider, J.; Forster, P.; Eichhorn, M.; Kieleck, C.
2020. Mid-Infrared Coherent Sources, in: in Proceedings OSA High-brightness Sources and Light-driven Interactions Congress 2020 (EUVXRAY, HILAS, MICS): 16–20 November 2020, Washington, DC, United States, Art.-Nr.: MF2C.3, Optica Publishing Group (OSA). doi:10.1364/MICS.2020.MF2C.3 -
Advances in two-micron lasers for nonlinear conversion into the mid-IR
Forster, P.; Romano, C.; Kieleck, C.; Eichhorn, M.
2020. Micro-Structured and Specialty Optical Fibres VI : 6-10 April 2020, online only, France. Ed. Kyriacos Kalli, Art.Nr. 1135509, Society of Photo-optical Instrumentation Engineers (SPIE). doi:10.1117/12.2560169