Functional Safety Control

Guarantees by Design

Vision

When designing automation for safety-critical technical systems, a large number of tests must be carried out according to ISO 262622 or IEC 61508 in order to show the safe behavior of the controls and algorithms developed against uncertainties occurring in the real world. With the increase in highly automated functions, typical product and system engineering are increasingly reaching their limits. The aim of the Functional Safety Control research group is therefore to establish methods very early in the automation design process that take into account the physical behavior of the technical system and its uncertainties in order to make safe or even guaranteed statements about the overall system behavior. This makes it possible to reduce the validation effort in the design process.

 

 

Predictive and safe planning as well as optimal utilization of technical system’s redundancy

One research focus are safe model-based trajectory planning methods. The goal is to determine the behavior of a system under previously defined performance criteria. Methodical approaches, such as the calculation of reachable sets, enable the technical system to be controlled in a proactive manner in such a way that uncertainties are already explicitly taken into account in the behavior planning, so that the security of the system can be guaranteed. In this comprehensive system design, dynamic non-linearities and uncertainties of the cascaded system are integrated into the planning algorithm. In particular, over-actuated systems are the focus of current research, which represent a system class with a high number of drive or movement degrees of freedom in order to optimize performance and safety through given actuator redundancy. Another research focus is therefore the control design of these overdetermined technical systems. While maintaining a safe and requirement-oriented primary function, additional performance properties, such as energy consumption, are integrated within the design process. Areas of application are all-wheel drive vehicles, nanopositioning actuators, transport robots and multi-robot systems.

Staff

Manuel Schwartz

Head of Research Group

Research Interest:
Over-actuated systems and control

   

Christopher Bohn

Research Associate

Research Interest:
Reachability analysis of highly automated vehicles

Florian Siebenrock

Research Associate

Research Interest:
Verified trajectory planning for mobile robots

Xin Ye

Research Associate

Research Interest:
Cooperation of Coupled Multi-Robot Systems

Andreas Zürcher

Research Associate

Research Interest:
Control of overactuated nano positioning systems

Ben-Micha Piscol

Research Associate

Research Interest:
AI-based vehicle control

   

 

Student Assistants

Timo Staudt

Planning and construction of an all-wheel drive vehicle demonstrator

Samuel Mauch

Planning and construction of an all-wheel drive vehicle demonstrator

Nils Daub

Provision of information on dynamic obstacles for trajectory planning

Yuying Zhao


Further development of an optimization method by dimension reduction and zero-space descent
 

Andreas Hellmuth


Real-time capable robot control in the field of multi-robot manufacturing system

Pia-Lucia Jonitz


Introduction to HJ Accessibility

Karl Handwerker


Robot control in the field of multi-robot manufacturing system
   

 

Recent job offers for student assistants can be found here.

 

Bachelor- and Master Students

Publications


2022
2021
2020
2019
2018
2017
2016
2015
2014
2013